Potential and risks of hydrogen-based e-fuels in climate change mitigation (2024)

References

  1. Olah, G. A., Goeppert, A. & Prakash, G. K. S. Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J. Org. Chem. 74, 487–498 (2009).

    Article CAS Google Scholar

  2. Sterner, M. Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems: Limiting Global Warming by Transforming Energy Systems Renewable Energies and Energy Efficiency Vol. 14 (Kassel Univ. Press, 2009).

  3. Zeman, F. S. & Keith, D. W. Carbon neutral hydrocarbons. Philos. Trans. R. Soc. A 366, 3901–3918 (2008).

    Article CAS Google Scholar

  4. He, T., Pachfule, P., Wu, H., Xu, Q. & Chen, P. Hydrogen carriers. Nat. Rev. Mater. 1, 16059 (2016).

    Article CAS Google Scholar

  5. Creutzig, F. et al. Bioenergy and climate change mitigation: an assessment. GCB Bioenergy 7, 916–944 (2015).

  6. Whitmarsh, L., Xenias, D. & Jones, C. R. Framing effects on public support for carbon capture and storage. Palgrave Commun. 5, 17 (2019).

    Article Google Scholar

  7. Minx, J. C. et al. Negative emissions—Part 1: Research landscape and synthesis. Environ. Res. Lett. 13, 063001 (2018).

    Article Google Scholar

  8. Smith, P. et al. Biophysical and economic limits to negative CO2 emissions. Nat. Clim. Change 6, 42–50 (2015).

    Article Google Scholar

  9. Luderer, G. et al. Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nat. Commun. 10, 5229 (2019).

    Article Google Scholar

  10. Williams, J. H. et al. The technology path to deep greenhouse gas emissions cuts by 2050: the pivotal role of electricity. Science 335, 53–59 (2012).

    Article CAS Google Scholar

  11. Needell, Z. A., McNerney, J., Chang, M. T. & Trancik, J. E. Potential for widespread electrification of personal vehicle travel in the United States. Nat. Energy 1, 16112 (2016).

    Article Google Scholar

  12. Madeddu, S. et al. The CO2 reduction potential for the European industry via direct electrification of heat supply (power-to-heat). Environ. Res. Lett. 15, 124004 (2020).

    Article CAS Google Scholar

  13. Mai, T. et al. Electrification Futures Study: Scenarios of Electric Technology Adoption and Power Consumption for the United States (NREL, 2018); https://doi.org/10.2172/1459351

  14. Jacobson, M. Z., Delucchi, M. A., Cameron, M. A. & Frew, B. A. Low-cost solution to the grid reliability problem with 100% penetration of intermittent wind, water, and solar for all purposes. Proc. Natl Acad. Sci. USA 112, 15060–15065 (2015).

    Article CAS Google Scholar

  15. Lu, B., Blakers, A., Stocks, M., Cheng, C. & Nadolny, A. A zero-carbon, reliable and affordable energy future in Australia. Energy 220, 119678 (2021).

    Article Google Scholar

  16. Bistline, J. E. & Blanford, G. J. More than one arrow in the quiver: why ‘100% renewables’ misses the mark. Proc. Natl Acad. Sci. USA 113, E3988–E3988 (2016).

    Article CAS Google Scholar

  17. Royal Society Sustainable Synthetic Carbon Based Fuels for Transport (2019).

  18. International Energy Agency The Future of Hydrogen: Seizing Today’s Opportunities (OECD, 2019); https://doi.org/10.1787/1e0514c4-en

  19. Hydrogen Economy Outlook: Key Messages (Bloomberg Finance, 2020).

  20. Davis, S. J. et al. Net-zero emissions energy systems. Science 360, eaas9793 (2018).

    Article Google Scholar

  21. Luderer, G. et al. Residual fossil CO2 emissions in 1.5–2 °C pathways. Nat. Clim. Change 8, 626–633 (2018).

    Article CAS Google Scholar

  22. Bruce, S. et al. Opportunities for Hydrogen in Commercial Aviation (CSIRO, 2020).

  23. Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation (World Economic Forum, 2020).

  24. Geres, R. et al. Roadmap Chemie 2050 auf dem Weg zu einer treibhausgasneutralen chemischen Industrie in Deutschland: eine Studie von DECHEMA und FutureCamp für den VCI (Verband der Chemischen Industrie, 2019).

  25. Blanco, H. & Faaij, A. A review at the role of storage in energy systems with a focus on power to gas and long-term storage. Renew. Sustain. Energy Rev. 81, 1049–1086 (2018).

    Article Google Scholar

  26. Peters, D. et al. Gas Decarbonisation Pathways 2020–2050Gas for Climate (Guidehouse, 2020).

  27. van Renssen, S. The hydrogen solution? Nat. Clim. Change 10, 799–801 (2020).

    Article Google Scholar

  28. Blanco, H., Nijs, W., Ruf, J. & Faaij, A. Potential of power-to-methane in the EU energy transition to a low carbon system using cost optimization. Appl. Energy 232, 323–340 (2018).

    Article CAS Google Scholar

  29. Siegemund, S. et al. The Potential of Electricity Based Fuels for Low Emission Transport in the EU (dena, 2017).

  30. VDA President Müller: Hydrogen and E-Fuels are Important Elements in Climate-Neutral Transport (German Association of the Automotive Industry—VDA, 2020).

  31. Wehrmann, B. ‘Tomorrow’s Oil’: Germany Seeks Hydrogen Export Deal with West African States (Clean Energy Wire, 2020).

  32. Barreto, L., Makihira, A. & Riahi, K. The hydrogen economy in the 21st century: a sustainable development scenario. Int. J. Hydrog. Energy 28, 267–284 (2003).

    Article CAS Google Scholar

  33. Abe, J. O., Popoola, A. P. I., Ajenifuja, E. & Popoola, O. M. Hydrogen energy, economy and storage: review and recommendation. Int. J. Hydrog. Energy 44, 15072–15086 (2019).

    Article CAS Google Scholar

  34. Fasihi, M., Bogdanov, D. & Breyer, C. Techno-economic assessment of power-to-liquids (PtL) fuels production and global trading based on hybrid PV–wind power plants. Energy Procedia 99, 243–268 (2016).

    Article CAS Google Scholar

  35. The Future Cost of Electricity-Based Synthetic Fuels (Agora Verkehrswende, Agora Energiewende and Frontier Economics, 2018); https://www.renewableh2.org/wp-content/uploads/2018/11/2018-09-Agora_SynKost_Study_EN_WEB.pdf

  36. Ram, M. et al. Powerfuels in a Renewable Energy WorldGlobal Volumes, Costs, and Trading 2030 to 2050 (dena, 2020).

  37. Brown, T., Schlachtberger, D., Kies, A., Schramm, S. & Greiner, M. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy 160, 720–739 (2018).

    Article Google Scholar

  38. ESYS, BDI & dena. Focusing Expertise, Shaping Policy—Energy Transition Now! Essential Findings of the Three Baseline Studies into the Feasibility of the Energy Transition by 2050 in Germany (Energy Systems of the Future, 2019).

  39. Capros, P. et al. Energy-system modelling of the EU strategy towards climate-neutrality. Energy Policy 134, 110960 (2019).

    Article Google Scholar

  40. Bos, M. J., Kersten, S. R. A. & Brilman, D. W. F. Wind power to methanol: renewable methanol production using electricity, electrolysis of water and CO2 air capture. Appl. Energy 264, 114672 (2020).

    Article CAS Google Scholar

  41. Stockl, F., Schill, W.-P. & Zerrahn, A. Green hydrogen: optimal supply chains and power sector benefits. Preprint at https://arxiv.org/abs/2005.03464 (2020).

  42. Milanzi, S. et al. Technischer Stand und Flexibilität des Power-to-Gas-Verfahrens (2018); https://www.er.tu-berlin.de/fileadmin/a38331300/Dateien/Technischer_Stand_und_Flexibilit%C3%A4t_des_Power-to-Gas-Verfahrens.pdf

  43. Beuttler, C., Charles, L. & Wurzbacher, J. The role of direct air capture in mitigation of anthropogenic greenhouse gas emissions. Front. Clim. 1, 10 (2019).

    Article Google Scholar

  44. Deutz, S. & Bardow, A. Life-cycle assessment of an industrial direct air capture process based on temperature-vacuum swing adsorption. Nat. Energy 6, 203–213 (2021).

    Article CAS Google Scholar

  45. Integrated Pollution Prevention and Control (IPPC) Reference Document on the Application of Best Available Techniques to Industrial Cooling Systems (European Commission, 2001).

  46. Cusano, G. et al. Best Available Techniques (BAT) Reference Document for the Non-Ferrous Metals IndustriesIndustrial Emissions Directive 2010/75/EU (Integrated Pollution Prevention and Control) (Joint Research Centre, 2017).

  47. Arpagaus, C., Bless, F., Uhlmann, M., Schiffmann, J. & Bertsch, S. S. High temperature heat pumps: market overview, state of the art, research status, refrigerants, and application potentials. Energy 152, 985–1010 (2018).

    Article CAS Google Scholar

  48. Electrification in the Dutch Process Industry: In-Depth Study of Promising Transition Pathways and Innovation Opportunities for Electrification in the Dutch Process Industry (Berenschot, CE Delft, Industrial Energy Experts & Energy Matters, 2017).

  49. Yilmaz, H. Ü., Keles, D., Chiodi, A., Hartel, R. & Mikulić, M. Analysis of the power-to-heat potential in the European energy system. Energy Strategy Rev. 20, 6–19 (2018).

    Article Google Scholar

  50. Life Cycle Inventory Database v3.7 www.ecoinvent.org (Ecoinvent, 2020).

  51. PSI team develops web tool for consumers to compare environmental impact of passenger cars in detail. Green Car Congress https://www.greencarcongress.com/2020/05/20200517-psi.html (2020).

  52. Knobloch, F. et al. Net emission reductions from electric cars and heat pumps in 59 world regions over time. Nat. Sustain. 3, 437–447 (2020).

    Article Google Scholar

  53. Lee, D. S. et al. The contribution of global aviation to anthropogenic climate forcing for 2000 to 2018. Atmos. Environ. 244, 117834 (2021).

    Article CAS Google Scholar

  54. Abanades, J. C., Rubin, E. S., Mazzotti, M. & Herzog, H. J. On the climate change mitigation potential of CO2 conversion to fuels. Energy Environ. Sci. 10, 2491–2499 (2017).

    Article CAS Google Scholar

  55. von der Assen, N., Jung, J. & Bardow, A. Life-cycle assessment of carbon dioxide capture and utilization: avoiding the pitfalls. Energy Environ. Sci. 6, 2721 (2013).

    Article Google Scholar

  56. Zhang, X., Bauer, C., Mutel, C. L. & Volkart, K. Life cycle assessment of power-to-gas: approaches, system variations and their environmental implications. Appl. Energy 190, 326–338 (2017).

    Article CAS Google Scholar

  57. Harper, A. B. et al. Land-use emissions play a critical role in land-based mitigation for Paris climate targets. Nat. Commun. 9, 2938 (2018).

    Article Google Scholar

  58. Cherubini, F., Peters, G. P., Berntsen, T., Strømman, A. H. & Hertwich, E. CO2 emissions from biomass combustion for bioenergy: atmospheric decay and contribution to global warming. GCB Bioenergy 3, 413–426 (2011).

    Article CAS Google Scholar

  59. Everall, J. & Ueckerdt, F. Electrolyser CAPEX and efficiency data for: potential and risks of hydrogen-based e-fuels in climate change mitigation. Version 1 (Zenodo, 2021); https://doi.org/10.5281/ZENODO.4619892

  60. Glenk, G. & Reichelstein, S. Economics of converting renewable power to hydrogen. Nat. Energy 4, 216–222 (2019).

    Article CAS Google Scholar

  61. Hank, C. et al. Energy efficiency and economic assessment of imported energy carriers based on renewable electricity. Sustain. Energy Fuels 4, 2256–2273 (2020).

    Article CAS Google Scholar

  62. Huppmann, D., Rogelj, J., Krey, V., Kriegler, E. & Riahi, K. A new scenario resource for integrated 1.5 °C research. Nat. Clim. Change 8, 1027–1030 (2018).

    Article Google Scholar

  63. Energy Technology Perspectives 2017: Catalyzing Energy Technology Transformations (International Energy Agency, 2017); https://www.iea.org/etp2017/

  64. Renewables 2020 Global Status Report (REN21, 2020).

  65. Lehtveer, M., Brynolf, S. & Grahn, M. What future for electrofuels in transport? Analysis of cost competitiveness in global climate mitigation. Environ. Sci. Technol. 53, 1690–1697 (2019).

    Article CAS Google Scholar

  66. Fasihi, M., Bogdanov, D. & Breyer, C. Long-term hydrocarbon trade options for the Maghreb region and Europe—renewable energy based synthetic fuels for a net zero emissions world. Sustainability 9, 306 (2017).

    Article Google Scholar

  67. A Hydrogen Strategy for a Climate-Neutral Europe (European Commission, 2020).

  68. Sacchi, R., Bauer, C. & Cox, B. Does size matter? The influence of size, load factor, range autonomy and application type on the life cycle assessment of current and future medium- and heavy-duty vehicles. Environ. Sci. Technol. 55, 5224–5235 (2021).

    Article CAS Google Scholar

Download references

Potential and risks of hydrogen-based e-fuels in climate change mitigation (2024)
Top Articles
Getting Back In Touch With The U.S. Women’s Softball Team
Doublelist: Full 2024 Review, Everything You Need to Know with Tips
Omega Pizza-Roast Beef -Seafood Middleton Menu
Duralast Gold Cv Axle
Tmf Saul's Investing Discussions
Craigslist Niles Ohio
Kobold Beast Tribe Guide and Rewards
Hertz Car Rental Partnership | Uber
Toyota gebraucht kaufen in tacoma_ - AutoScout24
According To The Wall Street Journal Weegy
Moviesda Dubbed Tamil Movies
Wmlink/Sspr
Edible Arrangements Keller
Wordscape 5832
Non Sequitur
Tcgplayer Store
Grasons Estate Sales Tucson
Schedule 360 Albertsons
Missed Connections Inland Empire
A Biomass Pyramid Of An Ecosystem Is Shown.Tertiary ConsumersSecondary ConsumersPrimary ConsumersProducersWhich
Tyrone Unblocked Games Bitlife
zom 100 mangadex - WebNovel
O'Reilly Auto Parts - Mathis, TX - Nextdoor
Craigslist Pearl Ms
Gazette Obituary Colorado Springs
Shreveport City Warrants Lookup
Engineering Beauties Chapter 1
Suspiciouswetspot
Finding Safety Data Sheets
Saxies Lake Worth
Yale College Confidential 2027
49S Results Coral
Craigslist/Phx
Mia Malkova Bio, Net Worth, Age & More - Magzica
Davita Salary
Mega Millions Lottery - Winning Numbers & Results
Gerber Federal Credit
Junior / medior handhaver openbare ruimte (BOA) - Gemeente Leiden
Pillowtalk Podcast Interview Turns Into 3Some
Arcadia Lesson Plan | Day 4: Crossword Puzzle | GradeSaver
Culvers Lyons Flavor Of The Day
Craigslist Mexicali Cars And Trucks - By Owner
Sam's Club Gas Prices Deptford Nj
3 Zodiac Signs Whose Wishes Come True After The Pisces Moon On September 16
Despacito Justin Bieber Lyrics
Sherwin Source Intranet
Bonecrusher Upgrade Rs3
Congruent Triangles Coloring Activity Dinosaur Answer Key
Rubmaps H
Nfsd Web Portal
Myhrkohls.con
Generator für Fantasie-Ortsnamen: Finden Sie den perfekten Namen
Latest Posts
Article information

Author: The Hon. Margery Christiansen

Last Updated:

Views: 6325

Rating: 5 / 5 (70 voted)

Reviews: 85% of readers found this page helpful

Author information

Name: The Hon. Margery Christiansen

Birthday: 2000-07-07

Address: 5050 Breitenberg Knoll, New Robert, MI 45409

Phone: +2556892639372

Job: Investor Mining Engineer

Hobby: Sketching, Cosplaying, Glassblowing, Genealogy, Crocheting, Archery, Skateboarding

Introduction: My name is The Hon. Margery Christiansen, I am a bright, adorable, precious, inexpensive, gorgeous, comfortable, happy person who loves writing and wants to share my knowledge and understanding with you.